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Abstract Vortex shedding behind a porous square cylinder is studied by a semi-implicit projection
finite element method in this paper. Flow fields over the porous square cylinder with various porosity
andDarcy numberwere calculated to investigate the effects of porousmedia onStrouhal number, lift
and drag coefficients at Re ¼ 100, 200 and 250. The global quantities of the shedding flow appear
evident variation for Da varied from 1025 to 1024. In particular, Strouhal number displays an
obvious jump for Da ¼ 1024 at Re ¼ 250, due to the variation in flow structure near the cylinder.
Larger Darcy number postpones the occurrence of flow fluctuation, and the oscillation flow presents
stronger amplitude. However, the flow field and the characteristic values of vortex shedding for
Da # 1026 are almost not changed. For different porosity, time histories of CD and CL look
similar. In conclusion, Darcy number demonstrates more influence on the flow field than porosity
does.
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Nomenclature
CD ¼ drag coefficient D=ðrU 2

1=2Þ
CL ¼ lift coefficient L=ðrU 2

1=2Þ
D ¼ drag force
Da ¼ Darcy number K/H 2

f ¼ vortex shedding frequency
g ¼ acceleration of gravity
H ¼ height of cylinder
K ¼ permeability
L ¼ lift force
n ¼ normal vector
p ¼ pressure
P ¼ dimensionless pressure p=rU 2

1

Re ¼ Reynolds number U1H=n
St ¼ Strouhal number fH=U1

t ¼ time
u ¼ velocity vector
U ¼ dimensionless velocity vector

u=U1

U1 ¼ free stream velocity
U ¼ x direction dimensionless velocity

V ¼ y direction dimensionless velocity
X ¼ dimensionless Cartesian

coordinate vector
x, y ¼ Cartesian coordinate

Greek symbols
G ¼ boundary
s ¼ stress
1 ¼ porosity
n ¼ kinematic viscosity
r ¼ density of fluid
t ¼ dimensionless time tU1=H

Superscripts
n; nþ 1 ¼ nth, nþ 1th time step

Subscripts
0 ¼ initial value
p ¼ shedding period
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Introduction
Vortex shedding behind bluff bodies such as circular cylinders, rectangular
cylinders has been studied in detail to understand the appearance and structure
of flow vortexes due to its practical applications in the design of road vehicles,
tower buildings, heat exchangers, etc. Many factors can affect the
characteristics of vortex shedding including the Reynolds number, the flow
conditions, the shape and conditions of bodies. Abundant research had been
done (Davis and Moore, 1982; Knisley, 1990; Okajima, 1982; Sarpkaya, 1999) to
provide the numerical or experimental data about lift coefficient, drag
coefficient, base pressure and Strouhal frequency in this flow. Most of the
studies focused on flow past impermeable bodies, but the flow behind a porous
body has not been broadly investigated. However, some real conditions
such as the heat transfer enhancement of porous inserts in flow field
(Martin et al., 1998), the instability of segmented solid propellant rocket
motors (Couton et al., 1997), and the use of porous plates as motion damping
devices (Downie et al., 2000) are deeply affected by the existence of a porous
body. Therefore, an in-depth investigation in the flow past a porous obstruction
will be necessary to accumulate more information for relating applications.

For most research about flow behind porous blocks, they concentrated on the
steady-state convection heat transfer phenomena (Chikh et al., 1998; Huang and
Vafai, 1993; Martin et al., 1998). About vortex flow, Cohen (1991) theoretically
investigated the flow over a circular cylinder with surface suction and blowing,
and derived a model for St-Re relationship by order of magnitude estimating.
Ling et al. (1993) numerically verified this model for flow over a square cylinder
and reached a similar trend between Strouhal and Reynolds numbers. In these
studies, the effects of porous blocks were induced by assigning a velocity
boundary condition on the square cylinder. The real phenomena for fluid
flowing through a porous block were not simulated in their research.

The purpose of this study is to realize the features of fluid flows behind
a square porous cylinder. A general non-Darcy porous media model is adopted
to describe the flows both inside and outside the cylinder. Effects of
permeability, porosity and Reynolds number on lift and drag coefficients
and Strouhal frequency are studied. Steady-state characteristic values and
time history of global quantities with vortex shedding are involved in the
results.

Mathematical model
A two-dimensional, laminar, and incompressible flow past a porous square
cylinder is considered here (Figure 1(a)). The fluid is Newtonian and the
properties of the fluid are assumed to be constant. The porous cylinder is
considered to be homogeneous, isotropic and saturated with a single-phase
fluid. To account for viscous and inertia effects in the porous region,
a generalized porous medium flow model (Nithiarasu et al., 1997) is used.
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The fluid motion is then governed by the following non-dimensionalized
equations:

Continuity equation:

7 ·U ¼ 0 ð1Þ

Momentum equation:

1

1

›U

›t
þ

1

12
U7 ·U ¼ 27P þ

1

1Re
72U2

1

DaRe
U2

1:75ffiffiffiffiffiffiffi
150

p
1ffiffiffiffiffiffi
Da

p
jUj

13=2
U ð2Þ

As described by Chikh et al. (1998), the momentum equation in fluid region can
be obtained by assigning the porosity 1 and Darcy number Da to be unity and a
very large number in equation (2), respectively. In this research, a value 107 is
assigned for Darcy number in the fluid region as that used in the research of

Figure 1.
Flow past a porous

square cylinder:
(a) problem definition;
and (b) finite element

mesh
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Nithiarasu et al. (1997). Referring to Chikh et al. (1998), a harmonic mean is
adopted to treat the sudden change between clear fluid and porous medium, as
suggested by Patankar (1980). In this research, physical variables (U, P) are
solved by a finite element method, and the construction of stiffness matrix for
the points on the interface accumulates the influence from porous and clear
areas. This procedure is similar to adopting a harmonic mean for the interfacial
values. In addition, the finest mesh is placed on the interface to reduce the
sudden change in flow medium (Figure 1(b)).

To complete the formulation, a set of boundary and initial conditions are
required. The Dirichlet boundary condition for velocity may be expressed as:

U ¼ Û on G1 ð3Þ

where Û denotes the function that is given on the boundary G1:
The specified stress boundary condition can be expressed as:

s ·n ¼ ŝ on G2 ð4Þ

where ŝ is a specified stress function on the boundary G2: G ¼ G1 < G2; is the
boundary of the domain.

The outflow boundary G3 is a part of the boundary G2, however, the pressure
itself and the velocity are unknown on G3. An approach used by Shimura and
Kawahara (1988) was adopted in this research. The pressure on outflow
boundary condition is calculated by taking the normal and tangential
derivatives of the Navier-Stokes equations and using the continuity equation.
The pressure Poisson equation for the boundary can be obtained as:

›2

›h2
þ

›2

›t2

� �
P nþ1 ¼ 2

›Un
h

›h

›Un
t

›t
2 2

›Un
h

›t

›Un
t

›h
ð5Þ

An additional Dirichlet boundary condition is required to solve
equation (5). The adjacent nodes to the outflow boundary are considered in
an approximate sense. The integration of equation (5) for last strip of elements
as shown in Figure 2 can be performed and it leads to the following set of
equations:

½A�
P nþ1

P n

" #
¼

qn

0

" #
ð6Þ

where P nþ1 on G3 are unknown and P n on the adjacent nodes are known,
A means the Laplacian matrix, and qn are the velocity gradient vectors on the
right hand side of equation (6). In this approach, only the pressure at time t ¼ 0
is necessary to solve the boundary pressure Poisson equation (6).
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Let the initial condition be given by:

UðX; 0Þ ¼ U0ðXÞ ð7Þ

Then it is required to satisfy the incompressibility condition,

7 ·U0 ¼ 0 ð8Þ

and

n ·U0 ¼ n · Û ð9Þ

Method of solution
A projection scheme (Chorin, 1968, Nithiarasu et al., 1996) is used for the
temporal discretization. The Adams-Bashforth scheme is adopted to treat the
advanced terms and an implicit Euler scheme is applied for the diffusion terms.
The solution procedure is as follows.

Step 1: A set of equations is solved without inclusion of the pressure term.

1

1

~Unþ1 2 Un

Dt

� �
¼ 2

1

12

3

2
ðU ·7UÞn 2

1

2
ðU ·7UÞn21

� �
þ

1

1Re
72Unþ1

2
1

DaRe
Unþ1 2

1:75ffiffiffiffiffiffiffi
150

p
1ffiffiffiffiffiffi
Da

p
jUj

13=2
U

ð10Þ

where ~Unþ1 is a provisional value for velocity.
Step 2. The pressure is obtained from a Poisson equation including ~Unþ1:

72P nþ1 ¼
1

1Dt
7 · ~Unþ1 ð11Þ

Figure 2.
Outflow boundary

condition
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Step 3. The real velocity is calculated by correcting the provisional velocity
with the pressure effect.

Unþ1 ¼ ~Unþ1 2 1Dt7P nþ1 ð12Þ

A Galerkin finite element method is used for the above equations in spatial
discretization to yield several sets of simultaneous linear equations solved by
a direct method. In order to reduce the sudden variation on the interface
between the fluid and porous region, the finest mesh ð0:05 £ 0:05Þ is used next
to the interface and enlarged gradually. A grid independence study was carried
out with several different meshes. The values of shedding period, drag
coefficient and lift coefficient for different meshes are listed in Table I. Because
of the computational cost and accuracy considerations, the 55 £ 79
non-uniformed mesh (Figure 1(b)) was used in this study. In addition, the
code was validated by comparing the results with those of Davis and Moore
(1982) for flow past a non-porous cylinder (Table II). The agreement between
the present result and their results is satisfactory.

Results and discussion
The main purpose of this research is to numerically determine the effects of
porous properties on the characteristics of vortex shedding. According to
Chung and Kang’s (2000) description, it is difficult to experimentally or
numerically observe the vortex structure at a high Reynolds number.
In addition, Sohankar et al. (1999) presented results that the transition from 2D
to 3D shedding flow occurred at Re¼160-200. In considering the flow past
a porous cylinder, the above range of Reynolds number will shift to larger
values due to less obstruction for fluid flow. Therefore, Reynolds number 100,
200 and 250 were chosen in this study. On the other hand, porosity 1 relating to

Mesh Shedding period CL CD

53£ 71 6.46 20.307-0.307 1.604-1.656
55 £ 79 6.47 20.314-0.314 1.604-1.656
61 £ 85 6.47 20.318-0.318 1.603-1.656

Table I.
Grid independent test at
Re ¼ 100, 1 ¼ 0.4, and
Da ¼ 1024

Source Re St CDav

Davis and Moorea 100 0.148-0.153 1.64
200 0.158-0.165 1.71

Present method 100 0.154 1.60
200 0.160 1.72

Note: aNumerical results with several meshes

Table II.
Comparison of global
quantities with
literature
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the ratio of void volume to total volume is set to be 0.4-0.8. Because it is very
difficult to obtain a Darcy number up to 1022 experimentally (Lage, 1992),
Darcy number, Da, is assigned as 1024-1028 in the present analysis.

First, the flows of Re ¼ 200 were studied. The plot domain is confined in
x ¼ 3.8-15.4 and y ¼ 5.5-9.5 to clearly scrutinize flow vortex. Figure 3 shows
the streamlines of 1 ¼ 0:4 and Da ¼ 1024 for lift coefficient at maximum, zero
and minimum conditions. At CLmax, a circulation appears behind the upper area
of the cylinder. Later the circulation moves forward and develops larger at
CL ¼ 0: The vortex continuously moves downstream and combines with the
main flow. Meanwhile, a small vortex has been developing in the lower area
behind the cylinder at CLmin condition. To study the effects of porous media, a
different Darcy number 1028 is chosen for the next case and the porosity is kept
the same. In Figure 4, the main pattern is similar to Figure 3, but the positions
and sizes of circulations are different. There is a phase angle difference between
these two conditions. Obviously, a smaller Darcy number implies the
cylinder with a smaller permeability and results in various vortex strength and
phase angle. In Figure 5(a), the streamlines at CLmax are shown for 1 ¼ 0:8;

Figure 3.
Streamline contours at

Re ¼ 200, 1 ¼ 0.4,
Da ¼ 1024: (a) CL¼max;

(b) CL¼0; and
(c) CL¼min
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Da ¼ 1024 and Re ¼ 200: A larger porosity corresponds to more void volume
in the cylinder for fluid to flow through and this effect induces a different
vortex size and phase angle in the vortex street. About the influence of
Reynolds number, Figure 5(b) and (c) demonstrate the flow field at Re ¼ 250:
Comparing with Figure 3(a), the stronger vortex stream penetrates the cylinder
at Da ¼ 1024 causing the variations in the size and position of the vortex
(Figure 5(b)). Nevertheless, the vortex flow for Da ¼ 1028 cannot penetrate the
cylinder due to the cylinder with smaller permeability. For further
understanding the detail of fluid flow in the porous cylinder, the streamlines
and velocity vectors inside and outside the porous cylinder are shown in
Figure 6 for those cases shown in Figure 5. The flow can easily penetrate the
porous region in a larger Darcy number as shown in Figure 6(a) and (b).
However, the porous cylinder seriously obstructs the fluid flow as Darcy
number is reduced to 1028 (Figure 6(c)).

In addition to the streamline structure, a study of flow evolution and
characteristic values for different Darcy number and porosity is interesting
to researchers. In order to track the flow evolution, the drag coefficient and

Figure 4.
Streamline contours at
Re ¼ 200, 1 ¼ 0.4,
Da ¼ 1028: (a) CL¼max;
(b) CL¼0; and
(c) CL¼min
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lift coefficient were calculated at each time step and shown in Figures 7 and 8.
The CL and CD time histories for different Darcy number are shown in
Figure 7(a) and (b), respectively. For easily observing the variation after the
start of vortex flow, the histories for t , 150 are not shown. Comparing CL

and CD curves, the pattern of lift coefficient displays a single-peak
oscillation whereas drag coefficient presents a twin-peak pattern.
The appearance of vortex shedding for Da ¼ 1024 is later than those at
Da ¼ 1026 and 1028 because of a larger permeability cylinder allowing fluid
to pass more easily, with less disturbance. In addition, the flow of
Da ¼ 1024 presents larger fluctuating amplitude in CL curve and a bigger
shift in CD curve. For Da ¼ 1026 flow, the phase angles of CL and CD also
present a delay from those of Da ¼ 1028, but the difference is very small.
Relating to the numerical results of flow behind a non-porous cylinder at
Re ¼ 200; the start of flow fluctuation at about t ¼ 20 is much earlier than
that for a porous cylinder. On the other hand, the effect of porosity is shown
in Figure 8 for 1 ¼ 0:4; 0:6 and 0:8. Even the phase angle of 1 ¼ 0:4 is
deferred, but the start of vortex shedding and phase angle for the three

Figure 5.
Streamline contours at
CL¼max: (a) Re ¼ 200,

1 ¼ 0.8, Da ¼ 1024;
(b) Re ¼ 250, 1 ¼ 0.4,

Da ¼ 1024; and
(c) Re ¼ 250, 1 ¼ 0.4,

Da ¼ 1028
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conditions are close. The difference among the three curves in CD and CL is
small; moreover, the lines for 1 ¼ 0:6 and 0:8 are nearly overlapped.

Furthermore, the values of tp, CL and CD are listed in Table III. In examining
the influence of Darcy number, the period of vortex shedding decreases with the
increase in Darcy number at 1 ¼ 0:4; but the amplitude of lift coefficient
enlarges with larger Da only for Re ¼ 100 and 200. This result is caused by
the variation in flow field near the cylinder as portrayed in Figures 3(a) and 6(b)
and (c). A lower Re flow or a smaller Da cylinder restricts the fluid to flow into
the porous cylinder, and varies the relating characteristic values. Similarly, the
fluctuating amplitude of drag coefficient enlarges for bigger Da, but the change
is not as significant as that in lift coefficient. In contrary to the close values in
the range 1028 # Da # 1026; an obvious jump in the physical quantities is

Figure 6.
Streamline contours and
velocity vectors near the
porous region at
CL¼max: (a) Re ¼ 200,
1 ¼ 0.8, Da ¼ 1024;
(b) Re ¼ 250, 1 ¼ 0.4,
Da ¼ 1024; and
(c) Re ¼ 250, 1 ¼ 0.4,
Da ¼ 1028

HFF
14,5

658



found at Da ¼ 1024 corresponding to larger changes in vortex structure,
especially at Re ¼ 250 status. About the influence of porosity, the calculations
are conducted for Darcy number 1024 and 0:4 # 1 # 0:8: The differences in
vortex shedding period, lift and drag coefficients are not as significant as
those for different Darcy number. For Re ¼ 200 and 250, tp and lift
coefficient are reduced with larger porosity, but those at Re ¼ 100 do not follow
this trend.

Figure 7.
Time histories at

Re ¼ 200, 1 ¼ 0.4: (a) lift
coefficient; and (b) drag

coefficient

Numerical
analysis of

vortex shedding

659



Figure 9 shows the St-Da and St-1 distribution in different Reynolds number. In
Figure 9(a), the St values for Da # 1026 keep the same and follow the sequence
StRe¼250 , StRe¼100 , StRe¼200: This is in contrast to the trend for flow over a
non-porous cylinder (Davis and Moore, 1982). However, the Strouhal number
becomes gradually larger for Da . 1026: In particular, the StRe¼250 at

Figure 8.
Time histories at
Re ¼ 200, Da ¼ 1024:
(a) lift coefficient; and
(b) drag coefficient
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Da ¼ 1024 increased to be larger than the other two values. The irregular
variation corresponds to a change in vortex structure at this status as described
in preceding paragraph. Referring to the effect of porosity, those for Re ¼ 250
and 200 demonstrate a rising trend from 1 ¼ 0:4 to 0.8, but the change in
different porosity is so small. For Re ¼ 100; the St value remains the same for
different porosity.

Conclusion
An analysis of two-dimensional flow over a porous square cylinder has been
carried out numerically in this work using a semi-implicit projection finite
element method. The generalized porous medium flow model is used to
describe the flow in the porous region including inertia, drag and boundary
effects. The results show that for flow past a lower permeability cylinder, the
vortex occurs earlier and the shedding period is longer. However, the variations
of fluctuating amplitude in CL and CD mainly depend on Reynolds number
causing different flow structures. Moreover, a larger porosity cylinder results

Re 1 Da tp CL CD

100 0.4 1028 6.52 20.288-0.288 1.559-1.610
0.4 1027 6.52 20.288-0.288 1.559-1.610
0.4 1026 6.52 20.288-0.288 1.559-1.609
0.4 1025 6.50 20.289-0.289 1.557-1.607
0.4 1024 6.47 20.314-0.314 1.604-1.656
0.5 1024 6.46 20.317-0.317 1.609-1.663
0.6 1024 6.47 20.318-0.318 1.614-1.669
0.7 1024 6.48 20.319-0.319 1.619-1.674
0.8 1024 6.48 20.321-0.321 1.623-1.678

200 0.4 1028 6.37 20.712-0.712 1.693-1.850
0.4 1027 6.37 20.712-0.712 1.693-1.850
0.4 1026 6.37 20.712-0.712 1.692-1.849
0.4 1025 6.35 20.727-0.727 1.698-1.858
0.4 1024 6.22 20.825-0.825 1.826-2.018
0.5 1024 6.20 20.816-0.816 1.828-2.021
0.6 1024 6.19 20.810-0.810 1.830-2.024
0.7 1024 6.18 20.805-0.805 1.832-2.027
0.8 1024 6.17 20.802-0.802 1.834-2.030

250 0.4 1028 6.72 21.077-1.078 1.755-2.017
0.4 1027 6.71 21.077-1.078 1.755-2.017
0.4 1026 6.70 21.074-1.075 1.754-2.016
0.4 1025 6.59 21.072-1.071 1.767-2.034
0.4 1024 6.13 21.024-1.024 1.920-2.189
0.5 1024 6.10 21.007-1.007 1.920-2.189
0.6 1024 6.08 20.988-0.988 1.922-2.191
0.7 1024 6.08 20.988-0.988 1.922-2.191
0.8 1024 6.07 20.983-0.983 1.923-2.193

Table III.
Global quantities with

vortex shedding
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in a smaller shedding period, except Re ¼ 100; but the difference is not
significant. A deferred phase angle appears in CD and CL time histories for
smaller porosity cylinders. In particular, there is an obvious jump in physical
quantities at Da ¼ 104 for Re ¼ 250 resulting in a change in the flow field
around the square cylinder.

Figure 9.
Strouhal number
distribution: (a) St-Da at
1 ¼ 0.4; and (b) St-1 at
Da ¼ 1024
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